
Minimal model for tumor angiogenesis

P. G. Kevrekidis,1 N. Whitaker,1 D. J. Good,2 and G. J. Herring1

1Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
2Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

�Received 20 June 2005; revised manuscript received 5 April 2006; published 30 June 2006�

In this work, we show a mathematical model for the angiogenesis by endothelial cells. We present the model
at the level of partial differential equations, describing the spatiotemporal evolution of the cell population, the
extracellular matrix macromolecules, the proteases, the tumor angiogenic factors, and the possible presence of
inhibitors. We mainly focus, however, on a complementary, more physiologically realistic, hybrid approach in
which the cells are treated as individual particles. We examine the model numerically in two-dimensional
settings, discussing its comparison with experimental results.
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I. INTRODUCTION

Angiogenesis is the process of formation of capillary cel-
lular sprouts in response to external chemical stimuli, leading
eventually to the formation of blood vessels. It is relevant to
the formation of the placenta during embryogenesis �1�, the
repair of mammalian tissue following injury �2� but, more
importantly for the purposes of the present study, to the pro-
cess of tumor growth.

In the last decade, an increasing effort has been made to
mathematically describe the dynamical evolution of angio-
genesis and its role in tumor growth. Principally, this effort is
centered around modeling the proliferation of endothelial
cells towards the tumor, as they are attracted by the tumor
angiogenic factors �TAFs� �3� in the background of the ex-
tracellular matrix �ECM� �4�. A number of studies examine
the role of the proteases secreted by the tumor that induce
degradation of the ECM and, hence, directed motion of the
endothelial cells towards the tumor �5�. Other models only
consider the cell population evolution and its coupling to the
ECM �6�. Similar models have been proposed for the study
of tumor growth, coupled to the presence of nutrients, see
e.g., �7,8�. Finally, much more complicated, multispecies
models with detailed chemistry have also been proposed
such as, e.g., the nine species models of �9�.

Our aim here is to revisit this problem from the perspec-
tive of deriving a “minimal” model that includes the princi-
pal biological interactions that contribute to the vasculariza-
tion of the cancerous tissue. A more specific goal is to use the
resulting model to reproduce qualitatively in vivo experi-
ments of angiogenesis such as, e.g., the ones of Ref. �10�.
Notice that our viewpoint of the problem is quite similar to
the one of the recent works of Refs. �11–15�, even though the
model and the principal processes it examines are to a con-
siderable extent different.

While most of the above mentioned theoretical works are
formulated in the continuum limit of description through
concentration fields �see also �16,17��, others have advocated
the use of discrete particle simulations �4� with a set of tran-
sition probabilities for one-step cell jumps. The latter class of
models can be systematically derived from their continuum
siblings �in the spirit of �18�; see also �19�� and are equiva-
lent to the former as the limit is approached. In the present

work, we follow the latter particle method. Thus, while we
originally set up the problem at the continuum, partial differ-
ential equation �PDE� level, we present and advocate the
systematic use of a particle formulation.

Our presentation will be structured as follows: in Sec. II,
we present the main biological mechanisms, and how they
can be translated, through physical intuition, into a minimal
mathematical model based on a PDE formulation. In Sec. III,
we present a corresponding particle based model that is
based on the PDE and incorporates these mechanisms. In
Sec. IV, we numerically study the model in two spatial di-
mensions. Finally, in Sec. V, we summarize our findings and
present a number of interesting extensions for future studies.

II. PHYSICAL MECHANISMS AND PDE MODEL

During angiogenesis, endothelial cells proliferate and
form a capillary sprout network in response to the TAF
stimuli secreted by the tumor. As a result the cells eventually
vascularize the tumor leading to its growth. Their motion
occurs in the ECM substrate where they interact with mac-
romolecules, such as fibronectin. The attraction of cells to
ECM gradients �termed “haptotaxis” �4�� prevents them from
approaching the tumor. Furthermore, the cells, and predomi-
nantly the tumor secrete proteases �P� that degrade the ECM,
assisting angiogenesis. Finally, when protease is generated,
the fibroblast cells in the ECM generate inhibitors �I� that
will, in turn, inactivate the protease, as well as inhibit the cell
motion towards the tumor; additional functions of the inhibi-
tors such as their enhancement of cell death �20� occur over
longer time scales and will be ignored here. Hence, there are
five principal “species” that should naturally be included in a
biologically relevant and physically motivated, mathematical
model of angiogenesis, namely the cells �C�, the TAFs �T�,
the extracellular matrix proteins such as fibronectin �F�, the
proteases �P�, and the inhibitors �I�. For each of these spe-
cies, we summarize their principal role in the angiogenesis
process, as follows:

�i� The cells: they diffuse �migrate� in the ECM, get gen-
erated �mitogenesis or proliferation�, and die �apoptosis�.
They are driven to the TAF concentration gradients �chemo-
taxis� �4�, as well as towards ECM concentration gradients
�4,5� and are similarly “repelled” from inhibitor gradients
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�10�. Hence, the dynamics that we will use for the evolution
of the cell will be similar to the one proposed by �4�, but for
the inclusion of the relevant inhibitor term.

�ii� The TAFs: for these, one can consider, in principle,
processes of their uptake by the ECM as well as processes
�over longer periods of time� of their random secretion by
the tumor. However, for the purposes of the present work
�i.e., for the shorter time scales of the order of a few days
considered here�, we will assume the TAF concentration as
being fixed �i.e., at a steady state; see also �4��.

�iii� The ECM: the secretion of proteases by the tumor
gradually degrades the ECM; proteases involved in the an-
giogenic process �such as metalloproteases� bind to the mac-
romolecules of the ECM, depleting it, and hence allowing
the cells to be driven to the tumor. The relevant evolution
equation here is motivated by �4�, however, it is appropri-
ately modified to account for the source of degradation in a
more physiologically realistic manner. In addition, we should
note here that in comparison with the surrounding ECM
components, the fibronectin has a large molecular weight
making diffusion slow and difficult. In addition, fibronectin
is bound to the surrounding ECM by noncovalent links. As a
result, the diffusivity of the fibronectin is small enough that it
will be ignored for the purposes of this paper.

�iv� The proteases: during angiogenesis, there are many
sources of protease production and our model incorporates
two of these: secretion of proteases by the tumor �i.e., pre-
dominantly in the vicinity of regions where the TAF concen-
tration is high� and proteases created through the interaction
of the endothelial cells with the TAFs. After secretion, the
proteases are free to diffuse throughout the ECM where they
either bind to the endothelial cell surface for use in breaking
down the fibronectin, or bind to components of the ECM, or
become inactivated by protease inhibitors. Notice that the
natural, self-degradation of the protease can also be easily
included in the model, even though it will be neglected here.

�v� The inhibitors: their diffusion will be neglected, but
their mutual neutralization with the proteases will be ac-
counted for. As noted in �10�, as well as in other experiments
using concentrated pellets of inhibitor �in an artificial sys-
tem�, the diffusion of the inhibitor can be inferred as being
negligible in the time scale of the assay. Secondly, in vivo,
inhibitors such as thrombospondin �TSP� bind to ECM mol-
ecules such as collagen, heparin, and fibronectin �21–23�,
and this limits the diffusion because the molecule is held in
place by the ECM through these interactions. Instead, the
principal role of the inhibitor is to block angiogenic growth
towards the pellet.

It is then natural to set up a five “species” dynamical
evolution model as follows:

Ct = Dc�C − � · �fF � F� − � · �fT�T�

+ � · �f I�I� + k1C�1 − C� , �1�

Ft = − k2PF , �2�

Pt = DP�P − k3PI + k4TC + k5T , �3�

It = − k3PI . �4�

The fifth species in the model of Eqs. �1�–�4� is the TAF
concentration T that will be described in detail below. The
diffusion coefficient of the cells is taken to be Dc=0.000 35,
following the spatial and temporal scaling of �4�. In particu-
lar, the relevant motility coefficients in dimensional units are
in the range of Dc=10−10 cm2/sec. This estimate is based on
the cell migration experiments of �24,25� �however, when the
cells migrate in the presence of neighbors, this may be an
overestimate; see e.g., the discussion of �26��. It is also im-
portant to note that the nondimensionalization of the equa-
tions follows the discussion of �4�, using 2 mm as the rel-
evant �unit� length scale and 1.5 days as the relevant �unit�
time scale. The terms containing fT, fF, and f I represent,
respectively, the chemotactic attraction of the cells towards
the tumor, the haptotactic response to the ECM gradients
such as fibronectin, and the “repulsive” effect of inhibitor
gradients �notice the opposite sign in the latter�. Following,
in part, the estimates of �4� whose model includes T and F,
we use fF=a1C and fT=a2C / �1+a3T� �where the latter as-
sumes chemotactic sensitivity decreases as TAF concentra-
tion increases, see also �27��. Similarly, we use f I=a4C. The
relevant functions are proportional to the cell concentration
C, as they should according to the intuition that “-tactic”
terms demonstrate the attraction of the endothelial cells to
the corresponding gradients. For most parameters, we adopt
the estimates of Ref. �4�. We comment below on the terms
that are absent in the latter model. For our intensive two-
dimensional �2D� computations, we use a domain of �0,1�
� �0,1�, with a TAF profile of T=exp�−r2 /�� where r is the
distance from the center of the tumor and �=0.45. Based
upon the molecular size of the proteases, we estimated their
diffusivity to be �10−6–10−7 cm2/sec, resulting in a nondi-
mensional protease diffusion rate of DP�1. The inhibitors
were absent in most previous models, however, in order for
them to produce in vivo results similar to the ones displayed
in Fig. 3 of �10�, the strength of their “repulsion” should be
comparable to the TAF attraction. We use these in vivo ex-
periments as a qualitative guide for the validation of our
model. The last term in Eq. �1� reflects the proliferation of
cells, incorporating both cell generation and apoptotic com-
ponents. In Eq. �2�, the term on the right-hand side represents
the annihilation of the fibronectin due to the protease. In Eq.
�3�, the first term represents diffusion of the protease, the
second term represents the annihilation of the protease due to
its binding with the inhibitors, the third term represents the
growth of protease due to the interaction of the cells with the
TAFs, and the last term represents the generation of protease
where TAF concentration is high. Finally, in Eq. �4�, the
inhibitors are depleted due to their interaction with the pro-
tease. Lastly, we have not been able to identify in the litera-
ture the remaining parameter values, thus values of k2=k3
=k4=0.1 and k5=0.2 are chosen as typical values �we have
found them to be representative of the relevant phenomenol-
ogy�.

III. PARTICLE MODEL

While the continuum model is valuable in revealing some
of the phenomenology and helpful in modeling mathemati-
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cally each of the physically relevant processes, it is clear that
a discrete, particlelike model would be much closer in prac-
tice to a physiological experiment. In the spirit of compari-
son with direct in vitro or in vivo experiments that monitor
the development of the sprout network, it is natural to for-
mulate a model for the propagation of a single cell �at the tip
of a forming sprout� rather than a continuum distribution of
cell density. In order to generate such a model, we build and
expand on the method of Ref. �4�, based on the transition
probability formulation of Ref. �18�. The latter, by construc-
tion, incorporates the “correct” continuum limit. In order to
develop this approach, one can consider a simple, explicit
Euler, centered-difference scheme for the solution of Eqs.
�1�–�4�. The corresponding “lattice” equation for the endot-
helial cells �in one spatial dimension� can be rewritten as
follows:

Cn
k+1 = PrCn−1

k + PsCn
k + PlCn+1

k , �5�

where:

Ps = 1 + �t�− 2
Dc

�x2 − a1�2Fn
k� −

a2�t

1 + a3Tn
k �2Tn

k

+ a4�t�2In
k + k1�1 − Cn

k� , �6�

Pr = �t� Dc

�x2 + a1
Fn+1

k − Fn−1
k

4�x2 � +
a2�t

1 + a3Tn−1
k

Tn+1
k − Tn−1

k

4�x2

− a4�t
In+1

k − In−1
k

4�x2 , �7�

Pl = �t� Dc

�x2 − a1
Fn+1

k − Fn−1
k

4�x2 � −
a2�t

1 + a3Tn+1
k

Tn+1
k − Tn−1

k

4�x2

+ a4�t
In+1

k − In−1
k

4�x2 , �8�

where �2Qn
k = �Qn+1

k +Qn−1
k −2Qn

k� /�x2 is the discrete Laplac-
ian; furthermore Cn

k �C�n�x ,k�t� represents the discretiza-
tion of the continuum field C�x , t�, �x and �t are the corre-
sponding spatial and temporal steps.

This can then be considered as a probabilistic model in
the following biased random walk sense: the term propor-
tional to Cn

k, yields the “contribution” to Cn
k+1 from Cn

k.
Hence, if appropriately normalized, it denotes the probability
that the cell will remain in the same position at the next time
step. On the other hand, the term proportional to Cn+1

k de-
notes the contribution to Cn

k+1 from its right neighbor, hence
if normalized, it amounts to the probability of moving to n
from n+1, i.e., of moving to the left. Similarly, the term
�Cn−1

k can be normalized to the probability of moving to the
right. The natural normalization factor is given by the sum of
the probabilities. Upon normalization, we use a �uniformly
distributed� random number generator to infer �by comparing
with the relevant probabilities Pr, Ps, and Pl� whether the
particle will move to the right, stay on the same location or
move to the left.

Notice that by construction, this probabilistic formulation
emulates the PDE description at the level of a particle simu-

lation. Furthermore, it is important to note that while we
gave the one-dimensional �1D� formulation for simplicity,
the same steps can be straightforwardly implemented in 2D,
using the relevant five-point stencil, and including probabili-
ties for moving up, down, left, right, as well as for staying at
the same site. The corresponding probabilities in this case are
given by:

Ps = 1 − �t�2
Dc

�x2 + 2
Dc

�y2 − a1�2Fn,m
k � −

a2�t

1 + a3Tn
k �2Tn,m

k

+ a4�t�2In,m
k + k1�1 − Cn

k� , �9�

Pr = �t� Dc

�x2 + a1
�xFn,m

k

2�x
� +

a2�t

1 + a3Tn−1,m
k

�xTn,m
k

2�x

− a4�t
�xIn,m

k

2�x
, �10�

Pl = �t� Dc

�x2 − a1
�xFn,m

k

2�x
� −

a2�t

1 + a3Tn+1,m
k

�xTn,m
k

2�x

+ a4�t
�xIn,m

k

2�x
, �11�

Pu = �t� Dc

�y2 + a1
�yFn,m

k

2�y
� +

a2�t

1 + a3Tn−1
k

�yTn,m
k

2�y

− a4�t
�yIn,m

k

2�y
, �12�

Pd = �t� Dc

�y2 − a1
�yFn,m

k

2�y
� −

a2�t

1 + a3Tn+1
k

�yTn,m
k

2�y

+ a4�t
�yIn,m

k

2�y
, �13�

where �2Qn,m
k = �Qn+1,m

k +Qn−1,m
k −2Qn,m

k � /�x2+ �Qn,m+1
k

+Qn,m−1
k −2Qn,m

k � /�y2 is the discrete Laplacian and �xQn,m
k

= �Qn+1,m
k −Qn−1,m

k � /2�x and �yQn,m
k = �Qn,m+1

k −Qn,m−1
k � /2�y

are the discrete first derivatives in x and y, respectively. Ad-
ditionally Cn,m

k �C�n�x ,m�y ,k�t� represents the discretiza-
tion of the continuum field C�x ,y , t�: �x, �y, and �t being
the corresponding spatial and temporal steps.

It should also be mentioned that in this formulation, the
original model assumes a hybrid form wherein the particle
simulation is solved on the same grid as the PDEs for the
remaining four species �F ,T , P, and I�. There are a number
of modifications of the above adjustment of the methodology
of �4� in our numerical implementation of the particle simu-
lation, such as, e.g., our inclusion of concentration dependent
terms, absent in �4�. In particular, the concentration field can
be assigned in a binary form in this particle setting: Cn

k

=�n,x0
, where x0 is the location of the cell�s� and � stands for

the Kronecker �. Notice that the relevant terms principally
include the stochasticity coming from the movement, even
though the contribution of proliferation/apoptosis is also in-
corporated in the relevant expression for Ps.
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In summary, the behavior of a capillary sprout is calcu-
lated by modeling the movement of the sprout’s leading en-
dothelial cell via a biased random walk. At each time step,
probability ranges are calculated by normalizing the results
of Eqs. �9�–�13�: stay range�0– Ps / Ptotal, move left range�
Ps / Ptotal− �Ps+ Pl� / Ptotal, move right range��Ps+ Pl� / Ptotal

− �Ps+ Pl+ Pr� / Ptotal, etc., where:

Ptotal = Ps + Pl + Pr + Pu + Pd. �14�

The cell’s movement is then determined by comparing a ran-
dom number �uniformly distributed between 0 and 1� with
the probability ranges above.

We hereafter focus on the main numerical findings of the
above model and their qualitative comparison with the ex-
periments of �10�.

IV. NUMERICAL RESULTS

We now give a number of typical numerical results. We
focus our attention, for the purposes of the present work, on
the physiologically realistic 2D case. Our findings are sum-
marized in Figs. 1–4 for the cells �as well as in Fig. 5 show-
ing the T, F, P, and I fields that are coupled to the cells in
our simulations�. The ECM fibronectin is initialized using a

uniformly distributed random profile. The protease is initial-
ized in a similar way, but biased towards the tumor �numeri-
cally achieved through multiplying its random distribution
by that of the TAFs�. This is due to the fact that the proteases
are predominantly secreted by the TAFs and, hence, will
most likely exist in regions where the TAF concentration is
maximal.

Figure 1 shows the case of a particle realization approach-
ing the tumor center located at �x ,y�= �0.8,0.5�. Clearly, al-
ready at short times of the order of t�6, in this case where
the inhibitor is absent, the cell has “arrived” at the location
of the tumor. This result is typical for this case: an average
“arrival” time of 6.6 �1.6186 standard deviation �STD�� was
calculated with 25 runs using the same initial conditions.
Also calculated was the average length of the pattern formed.
This was measured by the number of times the cell moved
during the simulation multiplied by the grid size ��10 �m�.
For this case, the average length was 3.25 mm. In Fig. 2 we
perform an intermediate–inhibitor experiment, motivated by
the studies of �10�: in the latter, the adhesive glycoprotein
thrombospondin �TSP� was used in a pellet �alongside an
inducer� to prevent the capillary sprout neovascularization of
corneas. Similar functions were demonstrated, in experi-
ments in vitro, by the hamster protein gp140, a proteolytic
fragment of TSP. Here, we place a localized inhibitor con-
centration between the cell initial position and the tumor �the

FIG. 1. The 2D case without the inhibitor. The left panel shows
the motion of the cell �solid line showing the motion of the sprout
tip� towards the tumor �dot�. The right panel shows the distance of
the sprout tip from the tumor center. Already for t�6, the cell has
arrived at the tumor.

FIG. 2. Same as the previous figure, but in the presence of an
inhibitor centered around �0.5,0.25�. The path can be approximated
by a circular arc with center located at the inhibitor and of radius
0.49.
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inhibitor I is centered around �x ,y�= �0.5,0.25��. In this case,
interestingly, the cell takes advantage of the geometry in or-
der to reach the tumor. In particular, it takes a longer time to
arrive at the tumor �in comparison with Fig. 1, i.e., here the
arrival time is �34, with an average time of 33.08 �3.2291
STD� and average length of 9.38 mm over 10 runs� but even-
tually the cell circumvents the inhibiting obstacle and finds
its way towards the tumor center1. The trajectory appears to
follow the arc of a circle. Starting soon after initialization,
the average distance from points on the trajectory to the in-
hibitor were calculated to be 0.49. The arc of a circle of
radius 0.49 with center �0.5,0.25� closely fits the path of the
cell. Figure 3 more closely emulates the experiment of �10�:
we place a localized “chunk” of inhibitor in a thin ring
around the tumor center 	I
sech�100* �r−0.1��, where r is
the distance from the tumor�. In this case, the cell arrives
close to the tumor for t�3, but is prevented by the inhibitor
“layer” to get any closer and hence “wanders” in the vicinity
of the inhibitor ring until t�35 �average time 35.32 �0.8550
STD� and average length 8.84 mm over 10 runs�, when the
inhibitor concentration is practically extinguished due to its
interaction with P, and then the cell finally arrives at the
tumor. Finally, in Fig. 4, all conditions are the same as in Fig.

3 except that the inhibitor is replenished to its initial value
every ten time units. At approximately 30 time units, the
inhibitors would normally be depleted and the cells would
begin to propagate as shown in our time versus distance plot.
This experiment indicates that tumor growth could be con-
trolled and possibly prevented through the periodic replen-
ishment of the inhibitor. The example clearly illustrates the
delay effect due to the inhibitor presence in the angiogenesis
process due to the periodic increase of the inhibitor strength.
Furthermore, we should note that the results demonstrated
here were found to be generic and representative of the dif-
ferent regimes of the absence and of the presence of the
inhibitor.

V. CONCLUSIONS

In this work, we presented a mathematical model for an-
giogenesis, aiming at a minimal description incorporating the
key biological populations and consonant with in vitro and in
vivo experiments such as the ones of Ref. �10�. We have
included the population of the inhibitors in the model and
demonstrated that it can play a critical role in delaying and
possibly even preventing angiogenesis �if periodically re-
peated, targeted doses of inhibitor pellets are provided�.
Clearly, this first step can be ramified in a number of differ-
ent directions. Citing a few of them, we mention: the inclu-
sion of dynamics for the inducers which have been assumed

1Due to the strength of the inhibitor and usage of no-flux bound-
ary conditions, the bottom and left boundaries of the domain were
moved 0.1 units in order to allow the cell to freely move.

FIG. 3. Same as the previous figures but for an inhibitor ring
initially around the tumor �see text for details�.

FIG. 4. This is essentially the same as the previous figure except
that the inhibitor is replenished every ten time units.
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here at steady state �this is relevant particularly for studies of
longer time scales�; the relevance of ECM and inhibitor de-
pendences of the coefficients governing cell proliferation that
has recently been demonstrated experimentally �28,29�.

More detailed interactions �diffusion of I, degradation of
P, generation of I from the fibroblast cells and diffuse rather
than localized concentration of the latter, etc.� can also be
incorporated. However, we believe that the present model
captures the qualitative basis of angiogenesis of endothelial
cells and can be used as a building block toward a more
quantitative understanding of the phenomenon. It can poten-
tially serve as a protocol devising strategy for inhibiting an-
giogenesis. One such example was discussed in Fig. 4. In
particular, our model predictions illustrated that there is a

critical time �e.g., in the setting of Fig. 3, tcr�30�, beyond
which the inhibitor is inactivated by the protease and hence
the cells vascularize the tumor. Thus, if the inhibitor concen-
tration is periodically “replenished” for a time close to the
critical time, then it may become possible to delay and pos-
sibly even completely inhibit the angiogenesis process, thus
eventually inducing tumor death. A numerical experiment il-
lustrating this principle is shown in Fig. 4.

Another useful aspect of the model is that it can be used
as a reverse-engineering technique for inferring some of the
dependences that cannot be measured directly such as, e.g.,
the strength of the attraction of the cells to ECM �or other�
gradients. Such aspects of the model are currently under in-
vestigation and will be reported in future work.
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